Dilation theory of CP maps and CP-semigroups

Orr Shalit

Technion

NISER Bhubaneswar, January 2020

(ii) My blog *Noncommutative Analysis* ->Lecture Notes -> “Topics in Operator Theory 106435". Starts similarly and continues in the operator algebraic direction.

(iii) My forthcoming “paper" with Michael Skeide *CP-Semigroups and Dilations, Subproduct Systems and Superproduct Systems: The Multiparameter Case and Beyond*.
Completely positive maps

An operator system is a selfadjoint unital subspace $1 \in X \subseteq \mathcal{B}(H)$. A map $\phi : X \to Y$ is said to be positive if $X \ni a \geq 0 \implies \phi(a) \geq 0$. It is completely positive if

$$\phi^{(n)} := \phi \otimes \text{id}_{M_n} : M_n(X) = X \otimes M_n \to M_n(Y) = Y \otimes M_n$$

is positive for all $n \in \mathbb{N}$.

Examples of CP maps

- A $*$-homomorphism $\pi : \mathcal{A} \to \mathcal{B}$ between C*-algebras is CP: $\pi(a^*a) = \pi(a)^*\pi(a)$ so positive, but $\pi^{(n)}$ is also a $*$-homomorphism.
- If $V \in \mathcal{B}(H,K)$ then $\phi : T \mapsto V^*TV$ is completely positive:

$$\phi^{(n)} : (T_{ij}) \mapsto \text{diag}(V^*,\ldots,V^*)(T_{ij}) \text{ diag}(V,\ldots,V)$$

- Sums of CPs, compositions of CPs, etc.
Stinespring’s dilation theorem

Theorem (Stinespring, 1955)

Let A be a unital C*-algebra and let $\phi : A \to \mathcal{B}(H)$ be a CP map. Then there exists a Hilbert space K, an operator $V \in \mathcal{B}(H, K)$, and a (unital) \ast-representation $\pi : A \to \mathcal{B}(K)$, such that

$$\phi(a) = V^* \pi(a) V \quad , \quad \text{for all } a \in A$$

Moreover, (π, K, V) can be chosen minimal, in the sense that $K = [\pi(A)V H]$.

(i) The minimal dilation above is called the **minimal Stinespring dilation**, and it is unique.

(ii) If ϕ is unital then $V^* V = V^* \pi(1) V = \phi(1) = I_H$, so V is an isometry. Then $H \equiv VH$ and write

$$\phi(a) = P_H \pi(a) \big|_H$$
Proof of Stinespring’s dilation theorem

Theorem (Stinespring, 1955)

Let A be a unital C*-algebra and let $\phi : A \to \mathcal{B}(H)$ be a CP map. Then there exists a Hilbert space K, an operator $V \in \mathcal{B}(H,K)$, and a (unital) \ast-representation $\pi : A \to \mathcal{B}(K)$, such that

$$\phi(a) = V^* \pi(a)V \quad , \quad \text{for all } a \in A$$

Proof. Construct the Hilbert space $A \otimes_\phi H$ obtained from $A \otimes_{\text{alg}} H$ with the (semi-)inner product (here is where we use CP)

$$\langle a \otimes g, b \otimes h \rangle = \langle g, \phi(a^* b) h \rangle$$

Define $\pi(a)b \otimes h = ab \otimes h$ and $Vh = 1 \otimes h$ (so $V^*(a \otimes h) = \phi(a)h$).

$$V^* \pi(a)Vh = V^* \pi(a)1 \otimes h = V^*(a \otimes h) = \phi(a)h$$

as required.
Application: representation of CP maps on $\mathcal{B}(H)$

Theorem (Choi-Kraus representation)

Let $\phi : M_n \rightarrow M_k$ be a CP map. Then there exist $W_i \in M_{n,k}$ such that

$$\phi(A) = \sum W_i A W_i^*, \quad A \in M_n$$

(True also for normal CP maps on $\mathcal{B}(H)$).

Proof. $\phi(\cdot) = V^* \pi(\cdot) V$. By basic representation theory of M_n:

$$\pi(A) \cong A \oplus A \oplus \cdots \oplus A = \sum V_i AV_i^*$$

where $V_i : \mathbb{C}^n \rightarrow \mathbb{C}^{mn}$ the isometry into the ith summand in $\mathbb{C}^n \oplus \cdots \oplus \mathbb{C}^n$. Put $W_i = V^* V_i$.

$$\phi(A) = V^* (\sum V_i AV_i^*) V = \sum W_i A W_i^*$$
Application: a dilation machine
Example: vN inequality ⇒ unitary dilation

Suppose that \(\|T\| \leq 1 \), and that we know

\[
\|p(T)\| \leq \|p\|_\infty \equiv \sup_{|z|=1} |p(z)|
\]

\(C(\mathbb{T}) \supset \mathbb{C}[z] \ni p \mapsto p(T) \in B(H) \) is unital and contractive.

\[
\implies C(\mathbb{T}) \supset \mathbb{C}[z] + \overline{\mathbb{C}[z]} \ni p + q \mapsto p(T) + q(T)^* \in B(H)
\]

is unital and positive. \(\mathbb{C}[z] + \overline{\mathbb{C}[z]} \) is dense in \(C(\mathbb{T}) \) ⇒ we obtain a unital positive \(\phi : C(\mathbb{T}) \to B(H) \) s.t. \(\phi(p) = p(T) \) for polynomials.

\(C(\mathbb{T}) \) is commutative ⇒ \(\phi \) is UCP. **Stinespring**: \(\pi : C(\mathbb{T}) \to B(K) \)

\[
p(T) = \phi(p) = P_H \pi(p) \big|_H = P_H \phi(p(\pi(z))) \big|_H = P_H \phi(p(U)) \big|_H
\]

\(U = \pi(z) \) is unitary because \(\pi \) is a \(*\)-homomorphism and \(z \) is unitary.
A dilation machine

Example: Ando inequality \(\Rightarrow\) Ando dilation?

Suppose that \(\|T_1\|, \|T_2\| \leq 1\), and that we know

\[
\|p(T_1, T_2)\| \leq \|p\|_\infty := \sup_{|z_1|=|z_2|=1} |p(z_1, z_2)|
\]

\(C(\mathbb{T}^2) \supset \mathbb{C}[z_1, z_2] \ni p \mapsto p(T_1, T_2) \in \mathcal{B}(H)\) is unital and contractive.

\[
\implies \mathbb{C}[z_1, z_2] + \overline{\mathbb{C}[z_1, z_2]} \ni p + \overline{q} \mapsto p(T_1, T_2) + q(T_1, T_2)^* \in \mathcal{B}(H)
\]
is unital and positive. \(\mathbb{C}[z_1, z_2] + \overline{\mathbb{C}[z_1, z_2]}\) is dense in \(C(\mathbb{T}^2)\)? No! The argument breaks down. Its true that the map is UCP, but this doesn’t help. We need \(\phi\) to be defined on a \(C^*\)-algebra to use Stinespring’s theorem. If we can extend \(p \mapsto p(T_1, T_2)\) to a UCP map \(\phi : C(\mathbb{T}^2) \to \mathcal{B}(H)\), then we can apply Stinespring as before:

\[
p(T_1, T_2) = \phi(p) = P_H \pi(p)|_H = P_H p(\pi(z_1), \pi(z_2))|_H = P_H p(U_1, U_2)|_H
\]

\(U_i = \pi(z_i)\) is unitary.
Arveson’s extension theorem and C*-dilations

Theorem (Arveson, 1969)

Let $X \subset A$ be an operator system contained in a C*-algebra B. Let $\phi : X \to B(H)$ be a CP map. Then there exists a CP map $\tilde{\phi} : B \to B(H)$ such that $\|\tilde{\phi}\| = \|\phi\|$ and which extends ϕ: $\tilde{\phi}(x) = \phi(x)$ for all $x \in X$.

For a proof, see Paulsen’s book (fails for positive). Arveson’s theorem can be used together with Stinespring’s theorem to obtain dilation theorems.

Definition

Let $1 \in X \subseteq B$ be a unital operator space. A linear map $\phi : X \to B(H)$ is said to have a C*-dilation to B if there exists a $*$-representation $\pi : B \to B(K)$, $K \supseteq H$, such that

$$\phi(x) = P_H \pi(x)\big|_H,$$

for all $x \in X$.

Theorem (Arveson, 1969)

Every UCP (or UCC) map has a C*-dilation.
A tuple $T = (T_1, \ldots, T_d)$ is said to be a **row contraction** if $\sum T_i T_i^* \leq I$. It is a **row isometry** if $\sum T_i^* T_j = \delta_{ij} I$.

Theorem

Every row contraction has a row isometric dilation.

By this we mean a row isometry (V_i) on $\mathcal{B}(K), K \supset H$, such that

$$T^\alpha = T_{\alpha_1} \cdots T_{\alpha_k} = P_H V_{\alpha_1} \cdots V_{\alpha_k} |_{H} = P_H V^\alpha |_{H}$$

for all $\alpha = (\alpha_1, \ldots, \alpha_k) \in \{1, 2, \ldots, d\}^k$, for all k.
Example: row isometric dilation

Theorem

Every row contraction has a row isometric dilation.

Proof ($d = 1$). Let $T \in \mathcal{B}(H)$, $\|T\| \leq 1$. Let S be the unilateral shift on ℓ^2. For $r \in (0, 1)$, let $D_rT = (I - r^2TT^*)^{1/2}$, and define $K_r(T) : H \to \ell^2 \otimes H$ by

$$K_r(T)h = \sum_n e_n \otimes (r^n D_rT T^n h)$$

$$K_r(T)^* K_r(T)h = \sum r^{2n} T^n D_r^2 T^n h = \sum r^{2n} T^n (I - r^2 T T^*) T^n h =$$

$$= \sum r^{2n} T^n T^n h - \sum r^{2(n+1)} T^{n+1} T^{(n+1)*} h = h$$

$$K_r(T)^* (S \otimes I) K_r(T)h = K_r(T)^* \sum e_{n+1} \otimes (r^n D_r T T^n h) =$$

$$= \sum r^{2n+1} T^{n+1} D_r^2 T T^n h = r Th$$
Example: row isometric dilation

Proof continued

Let $T \in \mathcal{B}(H)$, $\|T\| \leq 1$. Let S be the unilateral shift on ℓ^2. On $C^*(S)$ we define a CP map

$$\phi_r(a) = K_r(T)^* (a \otimes I) K_r(T)$$

We saw: $\phi_r(I) = I$, $\phi_r(S) = rT$. Likewise, $\phi_r(S^n) = r^n T^n$. Define a UCP $\Phi := \lim_{r \to 1} \phi_r$

$$\Phi(S^n) = T^n$$

Let $\pi : \mathcal{T} \rightarrow \mathcal{B}(K)$ be a C^*-dilation of Φ. Then

$$T^n = \Phi(S^n) = P_H\pi(S^n)|_H = P_HV^n|_H$$

where $V = \pi(S)$ is an isometry, being the image of an isometry under a (unital) $*$-homomorphism.
Dilation theory of completely positive semigroups
The objects of study

S a semigroup of \mathbb{R}_+^k, such that $0 \in S$.

$T = (T_s)_{s \in S}$ a family of maps on a unital C*-algebra \mathcal{B}.

- T is said to be a **CP-semigroup** (over S) if
 1. T_s is a (contractive) CP map for all s,
 2. $T_0 = \text{id}_\mathcal{B}$,
 3. $T_{s+t} = T_s \circ T_t$, for all $s, t \in S$.

- If $T_s(1) = 1$ for all s, then T is said to be a **Markov semigroup**.
- If T_s is a $*$-endomorphism for all s, then T is said to be an **E-semigroup**.
- Case of greatest interest: $S = \mathbb{R}_+$, then CP-semigroups $T = (T_t)_{t \geq 0}$ (and E-semigroups) have quantum dynamical interpretations.

\[(\text{UCP}) \quad t \mapsto T_t(a) \quad \text{evolution in an irreversible quantum system}\]

\[(\text{*auto}) \quad t \mapsto \alpha_t(a) \quad \text{evolution in a reversible quantum system}\]

\[14/41\]
The objects of study II

\[0 \in S \subseteq \mathbb{R}_+^k. \]

\[T = (T_s)_{s \in S} \text{ a CP-semigroup on a unital C*-algebra } \mathcal{B}. \]

Example

If \(T_1, \ldots, T_k \) are \(k \) commuting CP maps, then we get a CP-semigroup \((T_s)_{s \in \mathbb{N}^k}\) over \(S = \mathbb{N}^k \):

\[T_s = T_1^{s_1} \circ \cdots \circ T_k^{s_k} \quad \text{where} \quad s = (s_1, \ldots, s_k) \in \mathbb{N}^k. \]

Every CP-semigroup over \(S = \mathbb{N}^k \) arises this way.

Issue: The Stinespring dilations of different \(T_s \) do not work well together.
Bhat’s dilation theorem

Theorem (Bhat, 1996)

Let \(T = (T_t)_{t \geq 0} \) be a CP-semigroup on \(\mathcal{B}(H) \). Then there exists a Hilbert space \(K \) containing \(H \), and an \(E \)-semigroup \(\vartheta = (\vartheta_t)_{t \geq 0} \) on \(\mathcal{B}(K) \), such that

\[
T_t(A) = P_H \vartheta_t(A) P_H, \quad \text{for all } t \geq 0 \text{ and } A \in \mathcal{B}(H).
\]
Bhat’s dilation theorem

Theorem (Bhat, 1996)

Let $T = (T_t)_{t \geq 0}$ be a CP-semigroup on $\mathcal{B}(H)$. Then there exists a Hilbert space K containing H, and an E-semigroup $\varrho = (\varrho_t)_{t \geq 0}$ on $\mathcal{B}(K)$, such that

$$T_t(A) = P_H \varrho_t(A) P_H \quad , \quad \text{for all } t \geq 0 \text{ and } A \in \mathcal{B}(H).$$

Interpretation

An irreversible quantum dynamical system can be embedded in a reversible one (ϱ can be extended to a group of *-automorphisms).

Application

An index for quantum dynamical semigroups (Bhat).

Other notions of dilations of CP-semigroups have been studied since 70s: Davies, Evans-Lewis, Hudson-Parthasarathy, Kummerer, Sauvageout ...
Bhat’s theorem – discrete case (toy version)

Theorem

Let T be a normal CCP map on $\mathcal{B}(H)$. Then there exists a Hilbert space K containing H, and a normal $*$-endomorphism ϑ on $\mathcal{B}(K)$, such that

$$T^n(A) = P_H \vartheta^n(A) P_H, \quad \text{for all } n \in \mathbb{N} \text{ and } A \in \mathcal{B}(H).$$

Proof. We know that $T(A) = \sum W_i A W_i^*$. Assume $T(A) = W A W^*$. $W W^* = T(I) \leq I$ (T is contractive), so W is a contraction. Let $V \in \mathcal{B}(K)$ be an isometric dilation of W define

$$\vartheta(B) = VBV^*, \quad B \in \mathcal{B}(K)$$

This is an endomorphism:

$$\vartheta(B_1)\vartheta(B_2) = VB_1V^*VB_2V^* = VB_1B_2V^* = \vartheta(B_1B_2)$$

For $A = P_H A P_H \in \mathcal{B}(H)$,

$$P_H \vartheta^n(A) P_H = P_H V^n P_H A P_H V^n P_H = W^n A W^n = T^n(A)$$
Let T be a normal CCP map on $\mathcal{B}(H)$. Then there exists a Hilbert space K containing H, and a normal $*$-endomorphism ϑ on $\mathcal{B}(K)$, such that

$$T^n(A) = P_H \vartheta^n(A) P_H, \quad \text{for all } n \in \mathbb{N} \text{ and } A \in \mathcal{B}(H).$$

Proof. We know that $T(A) = \sum W_i A W_i^*$.
$\sum W_i W_i^* = T(I) \leq I$, so $W = (W_i)$ is a row contraction.
Let $V_i \in \mathcal{B}(K)$ be a row isometric dilation of (W_i) define

$$\vartheta(B) = \sum V_i B V_i^*, \quad B \in \mathcal{B}(K)$$

This is an endomorphism (recall $V_i^* V_j = \delta_{ij} I_K$):

$$\vartheta(B_1) \vartheta(B_2) = \sum V_i B_1 V_i^* \sum V_j B_2 V_j^* = \sum V_i B_1 B_2 V_i^* = \vartheta(B_1 B_2)$$

$$P_H \vartheta^n(A) P_H = \sum_{|\alpha| = n} P_H V^\alpha P_H A P_H V^{\alpha^*} P_H = \sum_{|\alpha| = n} W^\alpha A W^{\alpha^*} = T^n(A)$$
We study the possible generalizations of Bhat’s theorem to a CP-semigroup T on a unital C*-algebra \mathcal{B}, parameterized by a semigroup $S \subseteq \mathbb{R}^k_+$.

Definition

A **dilation** of T is a triple $(\mathcal{A}, \vartheta, p)$, where \mathcal{A} is a C*-algebra, $\vartheta = (\vartheta_s)_{s \in S}$ is a semigroup of *-endomorphisms, and $p \in \mathcal{A}$ is a projection, such that $\mathcal{B} = p\mathcal{A}p$, and such that

$$T_s(b) = p\vartheta_s(b)p \quad \text{for all } b \in \mathcal{B}, s \in S.$$
We study the possible generalizations of Bhat’s theorem to a CP-semigroup T on a unital C*-algebra B, paramaterized by a semigroup $S \subseteq \mathbb{R}_+^k$.

Definition

A **dilation** of T is a triple (A, ϑ, p), where A is a C*-algebra, $\vartheta = (\vartheta_s)_{s \in S}$ is a semigroup of *-endomorphisms, and $p \in A$ is a projection, such that $B = pAp$, and such that

$$T_s(b) = p\vartheta_s(b)p \quad \text{for all } b \in B, s \in S.$$

Questions

1. Find necessary & sufficient conditions for existence of dilation.
2. For fixed k, does every CP-semigroup over \mathbb{N}^k have a dilation?
Key tool: C*-correspondences

Let B be a C*-algebra. A **Hilbert C*-moudle** over B is a right module E that has a B-valued inner product $\langle \cdot, \cdot \rangle : E \times E \to B$, such that

(i) $\langle x, x \rangle \geq 0$ for all $x \in E$,

(ii) $\langle x, yb \rangle = \langle x, y \rangle b$ for all $x, y \in E$ and $b \in B$,

(iii) $\langle x, y \rangle = \langle y, x \rangle^*$ for all $x, y \in E$,

(iv) $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$ for all $x, y, z \in E$ and $\alpha, \beta \in \mathbb{C}$,

(v) $\|x\| := \|\langle x, x \rangle\|^{1/2}$ is a norm on E which makes E into a Banach space.

A **C*-correspondence** is a Hilbert C*-module that also has a left action by adjointable operators.

The tensor product $E \otimes F$: obtained from $E \otimes_{alg} F$ by inner product

$$\langle x \otimes y, x' \otimes y' \rangle = \langle y, \langle x, x' \rangle y' \rangle$$
The GNS representation \((\mathcal{E}, \xi)\) of a CP map

Let \(T : \mathcal{B} \to \mathcal{B}\) be a CP map. Then there exists a unique \(C^*\)-correspondence \(\mathcal{E}\) over \(\mathcal{B}\), and a vector \(\xi \in \mathcal{E}\), such that

\[
\text{span} \overline{\mathcal{B}\xi}\mathcal{B} = \mathcal{E}
\]

and

\[
\langle \xi, b\xi \rangle = T(b) \quad \text{for all } b \in \mathcal{B}.
\]

Construction: on \(\mathcal{E}_0 = \mathcal{B} \otimes_{\text{alg}} \mathcal{B}\) put inner product

\[
\langle a \otimes b, c \otimes d \rangle = b^* T(a^* c)d
\]

and bimodule operation

\[
a(x \otimes y)d = ax \otimes yd.
\]

Complete the quotient, and put \(\xi = 1 \otimes 1\). This works:

\[
\langle \xi, b\xi \rangle = \langle 1 \otimes 1, b \otimes 1 \rangle = 1^* T(1^* b)1 = T(b).
\]
The GNS representation \((\mathcal{E}, \xi)\) of a CP map

Let \(T : \mathcal{B} \to \mathcal{B}\) be a CP map. Then there exists a unique \(C^*\)-correspondence \(\mathcal{E}\) over \(\mathcal{B}\), and a vector \(\xi \in \mathcal{E}\), such that

\[
\text{span} \overline{\mathcal{B}\xi\mathcal{B}} = \mathcal{E}
\]

and

\[
\langle \xi, b\xi \rangle = T(b) \quad \text{for all } b \in \mathcal{B}.
\]

Construction: on \(\mathcal{E}_0 = \mathcal{B} \otimes_{\text{alg}} \mathcal{B}\) put inner product

\[
\langle a \otimes b, c \otimes d \rangle = b^* T(a^* c)d
\]

and bimodule operation

\[
a(x \otimes y)d = ax \otimes yd.
\]

Complete the quotient, and put \(\xi = 1 \otimes 1\). This works:

\[
\langle \xi, b\xi \rangle = \langle 1 \otimes 1, b \otimes 1 \rangle = 1^* T(1^* b)1 = T(b).
\]
The GNS representation of a CP-semigroup

Let \(T = (T_s)_{s \in S} \) be a CP-semigroup on \(\mathcal{B} \).

For every \(s \), let \((\mathcal{E}_s, \xi_s)\) be the GNS representation of \(T_s \).

For \(s, t \in S \), define

\[
w_{s,t} : \mathcal{E}_{s+t} \to \mathcal{E}_s \otimes \mathcal{E}_t
\]

by

\[
w_{s,t} : a\xi_{s+t}b \mapsto a\xi_s \otimes \xi_t b,
\]

and then extend linearly. We check:

\[
\langle a\xi_s \otimes \xi_t b, a\xi_s \otimes \xi_t b \rangle = \langle \xi_t b, \langle a\xi_s, a\xi_s \rangle \xi_t b \rangle = b^* \langle \xi_t, T_s(a^*a) \xi_t \rangle b =
\]

\[
= b^* T_t(T_s(a^*a))b = b^* T_{t+s}(a^*a)b = \langle a\xi_{s+t}b, a\xi_{s+t}b \rangle.
\]

\(w_{s,t} \) is an isometry!
Subproduct systems

A **subproduct system** is a family $\mathcal{E}^\otimes = (\mathcal{E}_s)_{s \in S}$ of \mathcal{B}-correspondences, together with a family $\{w_{s,t} : \mathcal{E}_{s+t} \to \mathcal{E}_s \otimes \mathcal{E}_t\}$ of isometric bimodule maps, which iterate associatively, i.e., the following diagram is commutative $(\forall r, s, t)$:

$$
\begin{array}{ccc}
\mathcal{E}_{r+s+t} & \longrightarrow & \mathcal{E}_r \otimes \mathcal{E}_{s+t} \\
\downarrow & & \downarrow \\
\mathcal{E}_{r+s} \otimes \mathcal{E}_t & \longrightarrow & \mathcal{E}_r \otimes \mathcal{E}_s \otimes \mathcal{E}_t
\end{array}
$$

A **product system** is a subproduct system in which $w_{s,t}$ are all unitaries.

Definition

A family $\{\xi_s \in \mathcal{E}_s\}_{s \in S}$ is called a **unit** if $w_{s,t} \xi_{s+t} = \xi_s \otimes \xi_t$ for all s, t.

1 Inclusion systems by Bhat-Mukherjee; recall the talk by Vijay Kumar U. Introduced also by S.-Solel.
Recap

Subproduct system: \(\mathcal{E}_s \odot \mathcal{E}_t \supseteq \mathcal{E}_{s+t} \)
Product system: \(E_s \odot E_t = E_{s+t} \)
Unit: \(\xi_s \odot \xi_t = \xi_{s+t} \)

For every CP-semigroup on \(\mathcal{B} \), there exists a subproduct system \(\mathcal{E}^\otimes = (\mathcal{E}_s)_{s \in \mathbb{S}} \) of \(\mathcal{B} \)-correspondences (called the GNS subproduct system) and a unit \((\xi_s)_{s \in \mathbb{S}} \) such that

\[
T_s(b) = \langle \xi_s, b\xi_s \rangle \quad \text{for all } s \in \mathbb{S}, b \in \mathcal{B}.
\]

Theorem (S.-Skeide, following Bhat-Skeide, 2000)

Let \(T \) be a Markov semigroup. If the GNS subproduct system of \(T \) can be embedded in a product system, then \(T \) has a unital dilation \((\mathcal{A}, \vartheta, p)\). In fact, one can take \(\mathcal{A} = \mathcal{B}^a(E) \), where \(E \) is some \(\mathcal{B} \)-correspondence.

Markov semigroup = unital CP-semigroup.
Bhat’s theorem (discrete case) revisited

Theorem

Let T be a Markov semigroup. If the GNS subproduct system of T can be embedded in a **product system**, then T has a unital dilation $(\mathcal{A}, \vartheta, p)$.

Theorem

Let T be a UCP map on a C^*-algebra \mathcal{B}. Then there exists a triple $(\mathcal{A}, \vartheta, p)$ such that

$$T^n(b) = p\vartheta^n(b)p \quad , \quad \text{for all } n \in \mathbb{N}, b \in \mathcal{B}$$

Proof. We need to show that the GNS subproduct system $(\mathcal{E}_n)_{n \in \mathbb{N}}$ of the semigroup $(T_n := T^n)_{n \in \mathbb{N}}$ embeds into a product system. Define $E_n = \mathcal{E}_1^\otimes n$. Then $\mathcal{E}_{m+n} \hookrightarrow \mathcal{E}_m \otimes \mathcal{E}_n$, by induction:

$$\mathcal{E}_n \hookrightarrow \mathcal{E}_{n-1} \otimes \mathcal{E}_1 \hookrightarrow \cdots \hookrightarrow \mathcal{E}_1^\otimes n = E_n$$

preserves structure! By the theorem above, T has a dilation.
Theorem (S.-Skeide, see also Bhat 98, Solel 2006)

Every Markov semigroup over \mathbb{N}^2 has a unital dilation:

If T_1, T_2 are two commuting normal unital CP maps on a vN algebra \mathcal{B}, then there exist two commuting normal unital *-endomorphisms ϑ_1, ϑ_2 on a vN algebra \mathcal{A} containing \mathcal{B}, a projection $p \in \mathcal{A}$ such that $\mathcal{B} = p\mathcal{A}p$, and

$$T_1^{n_1} \circ T_2^{n_2}(b) = p\vartheta_1^{n_1} \circ \vartheta_2^{n_2}(b)p \quad \text{for all } b \in \mathcal{B}, n_1, n_2 \in \mathbb{N}.$$

Proof.

Given a Markov semigroup over \mathbb{N}^2, we construct a product system that contains the GNS subproduct system of that semigroup. Then apply previous theorem.
A sufficient condition for the existence of a dilation for a unital CP-semigroup T is that its GNS subproduct system embeds into a product system.

What about the converse direction?

Theorem (S.-Skeide)

- If a normal Markov semigroup $T = (T_s)_{s \in S}$ has a minimal normal dilation then its GNS subproduct system embeds into a product system.
- A Markov semigroup $T = (T_s)_{s \in S}$ has a strict dilation $(\mathcal{B}^a(E), \vartheta, p)$ where E is a \mathcal{B}-correspondence, if and only if its GNS subproduct system embeds into a product system.

1. We did not define what "minimal" means.
2. Over \mathbb{N}^k ($k \geq 2$), minimal dilations are not unique.
3. Over \mathbb{N}^k ($k \geq 2$), a given dilation might not be "minimalizable", that is, cannot be compressed or restricted to a minimal one (new and weird).
4. What about dilations $(\mathcal{A}, \vartheta, p)$, where $\mathcal{A} \neq \mathcal{B}^a(E)$?
The converse direction II

Theorem (S.-Skeide)

- If a normal Markov semigroup \(T = (T_s)_{s \in \mathbb{S}} \) has a normal minimal dilation then its GNS subproduct system embeds into a product system.

Corollary (S.-Skeide)

There exist CP and Markov semigroups over \(\mathbb{N}^3 \) for which there is no minimal dilation.

"Proof" (not really...)

[S.-Solel] construct a subproduct system over \(\mathbb{N}^3 \) that cannot be embedded into a product system. We apply the above theorem to that subproduct system.

Problem: this does not rule out the existence of non-minimal dilations.
Minimality, von Neumann case

Let $T = (T_s)_{s \in S}$ be a CP-semigroup over S, and $(\mathcal{A}, \vartheta, p)$ a dilation. Suppose that $\mathcal{B} \subseteq \mathcal{B}(H)$ and that $\mathcal{A} \subseteq \mathcal{B}(K)$, so that $p = P_H$.

There are three properties that one may require for "minimality":

1. "Algebraic minimality", that is

 $$\mathcal{A} = W^*(\bigcup_{s \in S} \vartheta_s(\mathcal{B})).$$

2. "Spatial minimality", that is, $\mathcal{A} = \overline{A p A}^s$. Assuming 1, same as:

 $$K = \text{span}\{\vartheta_{s_1}(b_1) \cdots \vartheta_{s_n}(b_n)h : s_i \in S, b_i \in \mathcal{B}, h \in H\}.$$

3. "Incompressibility": there is no nontrivial projection $p \leq q \in \mathcal{A}$ s.t.

 $$q\vartheta_s(\cdot)q : q\mathcal{A}q \to q\mathcal{A}q, \quad q\vartheta_s(\cdot)q : qa \mapsto q\vartheta_s(qaq)q,$$

 is an E-semigroup, and a dilation of T.

Minimality, von Neumann case (cont.)

1. \(A = W^*(\bigcup_{s \in S} \vartheta_s(B)) \).
2. \(A = \overline{ApA}^s \).
3. No nontrivial projection \(p \leq q \neq 1 \) in \(A \) s.t. \(q\vartheta_s(\cdot)q \) is a dilation.

The notion of minimality referred to in theorem and corollary above is the strongest one: 1+2. (This also implies 3).

It is easy to restrict to a semigroup satisfying 1, and not hard to compress to obtain 1+3, but that is not the notion that works best.

Over \(\mathbb{R}_+ \) (and \(\mathbb{N} \)), 1+2 is equivalent to 1+3. (non-trivial!)

We have an example of a dilation \((A, \vartheta, p)\) over \(\mathbb{N}^2 \), which satisfies 2, but not 1. After restricting to \(W^*(\bigcup_{s \in S} \vartheta_s(B)) \), and then compressing to the minimal compressing \(q \), one obtains an algebraically minimal and incompressible dilation (1+3), which does not satisfy 2.
Dilation ⇒ what?

Let $T = (T_s)_{s \in S}$ be a Markov semigroup on \mathcal{B}, and $(\mathcal{A}, \vartheta, p)$ a dilation. Following a construction from [Skeide02], we see what structure arises. Define a family $(E_s)_{s \in S}$ of \mathcal{B}-correspondences as follows:

$$E := Ap, \quad E_s := \vartheta_s(p)E.$$

C*-correspondence structure:

$$b \cdot x_s := \vartheta_s(b)x_s, \quad x_s \cdot b := xb, \quad x_s \in E_s, b \in \mathcal{B}.$$

$$\langle x_s, y_s \rangle := x_s^* y_s \in pAp = \mathcal{B}.$$

Unit:

$$\eta_s := \vartheta_s(p)p \in E_s.$$

(E_s, η_s) represents T

$$\langle \eta_s, b \cdot \eta_s \rangle = p\vartheta_s(p)\vartheta_s(b)\vartheta_s(p)p = p\vartheta_s(b)p = T_s(b).$$
Let $T = (T_s)_{s \in S}$ be a Markov semigroup on \mathcal{B}, and $(\mathcal{A}, \vartheta, p)$ a dilation. We constructed a family $(E_s)_{s \in S}$ of \mathcal{B}-correspondences, and a family $(\eta_s)_{s \in S}$ of unit vectors ($\eta_s \in E_s$) that represent T:

$$\langle \eta_s, b \cdot \eta_s \rangle = p\vartheta_s(b)p = T_s(b).$$

Hence (E_s, η_s) "contains" the GNS representation (\mathcal{E}_s, ξ_s) of T_s.

Q: is $(E_s)_{s \in S}$ a PRODUCT system?
Dilation ⇒ what? III

Let \(T = (T_s)_{s \in S} \) be a CP-semigroup on \(\mathcal{B} \), and \((A, \vartheta, p)\) a dilation. Let \(((E_s)_{s \in S}, (\eta_s)_{s \in S}) \) be as above, \(\langle \eta_s, b \cdot \eta_s \rangle = T_s(b) \).

Define

\[
\nu_{s,t} : E_s \odot E_t \to E_{s+t}
\]

\[
\nu_{s,t} : x_s \odot y_t \mapsto \vartheta_t(x_s)y_t
\]

A direct calculation shows:

\[
\langle x_s \odot y_t, x'_s \odot y'_t \rangle = \ldots = \langle \vartheta_t(x_s)y_t, \vartheta_t(x'_s)y'_t \rangle.
\]

Hence \(\nu_{s,t} : E_s \odot E_t \to E_{s+t} \) is an isometry:

\[
E_s \odot E_t \subseteq E_{s+t}.
\]

\((E_s)_{s \in S}\) is a superproduct system (but not always a product system).
A superproduct system is a family $E^\otimes = (E_s)_{s \in S}$ of \mathcal{B}-correspondences, together with a family $\{v_{s,t} : E_s \odot E_t \to E_{s+t}\}$ of isometric bimodule maps, which iterate associatively, i.e., the following diagram is commutative $(\forall r, s, t)$:

$$
\begin{array}{ccc}
E_r \odot E_s \odot E_t & \longrightarrow & E_r \odot E_{s+t} \\
\downarrow & & \downarrow \\
E_{r+s} \odot E_t & \longrightarrow & E_{r+s+t}
\end{array}
$$

A product system is a superproduct system in which $v_{s,t}$ are all unitaries.

2 The notion is due to Margetts and Srinivasan
Recap

Subproduct system: \(\mathcal{E}_s \circ \mathcal{E}_t \supseteq \mathcal{E}_{s+t} \)

Product system: \(E_s \circ E_t = E_{s+t} \)

Unit: \(\xi_s \circ \xi_t = \xi_{s+t} \)

Superproduct system: \(E_s \circ E_t \subseteq E_{s+t} \)

For every CP-semigroup \(T \) on \(\mathcal{B} \), there exists a subproduct system \(\mathcal{E}^\oplus = (\mathcal{E}_s)_{s \in \mathbb{S}} \) of \(\mathcal{B} \)-correspondences (the **GNS subproduct system**) and a unit \((\xi_s)_{s \in \mathbb{S}} \) such that

\[
T_s(b) = \langle \xi_s, b\xi_s \rangle \quad \text{for all } s \in \mathbb{S}, b \in \mathcal{B}.
\]

If \(T \) unital, and if the GNS subproduct system can be embedded into a product system, then \(T \) has a dilation \((\mathcal{A}, \vartheta, p) \) (with \(\mathcal{A} = \mathcal{B}^a(E) \)).

If \(T \) has a dilation \((\mathcal{A}, \vartheta, p) \), then the GNS subproduct system must embed into a superproduct system.
Dilations and superproduct systems

Theorem (S.-Skeide)

Let $T = (T_s)_{s \in S}$ be a Markov semigroup on a von Neumann algebra \mathcal{B}.

- A sufficient condition for T to have a dilation, is that the GNS subproduct system of T embeds into a product system.
- A necessary condition for T to have a dilation, is that the GNS subproduct system of T embeds into a superproduct system.

Corollary (S.-Skeide)

There exist CP and Markov semigroups over \mathbb{N}^3 that have no dilation.

"Proof" (not really...)

We have an example of a subproduct system over \mathbb{N}^3 that cannot be embedded into a superproduct system.

The truth: the SPS is not the GNS subproduct system of a CP-semigroup, so the proof does not really go like that...
Another way subproduct systems arise (W^* case)

Let E be a full W^*-correspondence over B, and $B^a(E)$ the adjointable operators on E. E is a Morita W^* equivalence from $B^a(E)$ to B:

$$B = E^{*\@s}E, \quad B^a(E) = E\@s E^*.$$

For $T = (T_s)_{s \in S}$ a CP-s.g. on $B^a(E)$, and $\mathcal{E}^{\otimes} = (\mathcal{E}_s)_{s \in S}$ the GNS SPS consider the Morita equivalent subproduct system $\mathcal{F}^{\otimes} = (\mathcal{F}_s)_{s \in S}$ given by

$$\mathcal{F}_s := E^{*\@s} \mathcal{E}_s \@s E.$$

\mathcal{F}^{\otimes} the subproduct system of B-correspondences associated with T.

Theorem (S.-Skeide, see also S.-Solel)

Every subproduct system over B is the subproduct system of B-correspondences associated with some normal CP-semigroup T acting on some $B^a(E)$, where E is a B-correspondence.

In particular, every SPS is Morita equivalent to the GNS of some CP-semigroup.

Morita equivalence behaves nicely w.r.t. inclusions into product systems.
Thank you!