Dilations, inclusions of matrix convex sets, and completely positive maps

Ken Davidson, Adam Dor-On, Orr Shalit and Baruch Solel

Technion

July 2016
Dilations

\[A = (A_1, \ldots, A_d) \in B(\mathcal{H})^d \]
\[B = (B_1, \ldots, B_d) \in B(\mathcal{K})^d, \text{ where } \mathcal{K} \supset \mathcal{H} \]

Definition

A is said to be a **compression** of B if

\[A_i = P_{\mathcal{H}} B_i |_{\mathcal{H}} \text{ for all } i = 1, \ldots d \]

We then say that B is a **dilation** of A, and we denote \(A \prec B \).
Dilations

\[A = (A_1, \ldots, A_d) \in B(\mathcal{H})^d \]
\[B = (B_1, \ldots, B_d) \in B(\mathcal{K})^d, \text{ where } \mathcal{K} \supset \mathcal{H} \]

Definition

A is said to be a **compression** of B if

\[A_i = P_{\mathcal{H}} B_i|_{\mathcal{H}} \text{ for all } i = 1, \ldots d \]

We then say that B is a **dilation** of A, and we denote \(A \prec B \).

Equivalently

\[B_i = \begin{pmatrix} A_i & * \\ * & * \end{pmatrix} \]
Dilations

\[A = (A_1, \ldots, A_d) \in B(\mathcal{H})^d \]
\[B = (B_1, \ldots, B_d) \in B(\mathcal{K})^d, \text{ where } \mathcal{K} \supset H \]

Definition

\(A \) is said to be a **compression** of \(B \) if

\[A_i = P_\mathcal{H} B_i \big|_\mathcal{H} \quad \text{for all} \quad i = 1, \ldots d \]

We then say that \(B \) is a **dilation** of \(A \), and we denote \(A \prec B \).

Equivalently

\[\exists V : \mathcal{H} \rightarrow \mathcal{K} \text{ and isometry such that} \]

\[A_i = V^* B_i V \]
Classical setting

\[A = (A_1, \ldots, A_d) \in B(\mathcal{H})^d \text{ commuting operators} \]
\[B = (B_1, \ldots, B_d) \in B(\mathcal{K})^d, \text{ normal commuting where } \mathcal{K} \supset \mathcal{H} \]

Definition

If for all \(n_1, \ldots, n_d \in \mathbb{N}, \)

\[A_1^{n_1} \cdots A_d^{n_d} = P_\mathcal{H} B_1^{n_1} \cdots B_d^{n_d} |_{\mathcal{H}} \]

then we say that \(B \) is a (power) dilation of \(A. \)
Classical setting

\[A = (A_1, \ldots, A_d) \in B(\mathcal{H})^d \text{ commuting operators} \]

\[B = (B_1, \ldots, B_d) \in B(\mathcal{K})^d, \text{ normal commuting} \quad \text{where} \quad \mathcal{K} \supset \mathcal{H} \]

Definition

If for all \(n_1, \ldots, n_d \in \mathbb{N} \),

\[A_1^{n_1} \cdots A_d^{n_d} = P_{\mathcal{H}} B_1^{n_1} \cdots B_d^{n_d} \big|_{\mathcal{H}} \]

then we say that \(B \) is a (power) dilation of \(A \).

\[B_1^{n_1} \cdots B_d^{n_d} = \begin{pmatrix} A_1^{n_1} \cdots A_d^{n_d} & \ast \\ \ast & \ast \end{pmatrix} \]
Classical setting

$A = (A_1, \ldots, A_d) \in B(\mathcal{H})^d$ commuting operators
$B = (B_1, \ldots, B_d) \in B(\mathcal{K})^d$, normal commuting where $\mathcal{K} \supset H$

Definition

If for all $n_1, \ldots, n_d \in \mathbb{N}$,

$$A_1^{n_1} \cdots A_d^{n_d} = P_\mathcal{H} B_1^{n_1} \cdots B_d^{n_d} \big|_\mathcal{H}$$

then we say that B is a (power) dilation of A.

$$B_1^{n_1} \cdots B_d^{n_d} = \begin{pmatrix} A_1^{n_1} \cdots A_d^{n_d} & * \\ * & * \end{pmatrix}$$

$$B_i = \begin{pmatrix} * & * & * \\ 0 & A_i & * \\ 0 & 0 & * \end{pmatrix}$$
Classical dilation theorems

Theorem (Sz.-Nagy and Ando dilations theorem)

For every pair of commuting contractions $A_1, A_2 \in B(\mathcal{H})$, there exists a pair of commuting unitaries $U_1, U_2 \in B(\mathcal{K})$ such that

$$A_1^m A_2^n = P_{\mathcal{H}} U_1^m U_2^n |_{\mathcal{H}} \quad \text{for all } m, n \geq 0$$
Classical dilation theorems

Theorem (Sz.-Nagy and Ando dilations theorem)

For every pair of commuting contractions $A_1, A_2 \in B(\mathcal{H})$, there exists a pair of commuting unitaries $U_1, U_2 \in B(\mathcal{K})$ such that

$$A_1^m A_2^n = P_{\mathcal{H}} U_1^m U_2^n |_{\mathcal{H}} \quad \text{for all } m, n \geq 0$$

Theorem (Bunce, Frazho, Popescu nc dilation theorem)

For every d-tuple row contraction $(A_1, \ldots, A_d) \in B(\mathcal{H})^d$ (i.e., $\|[A_1 \cdots A_d]\| \leq 1$), there exists a d-tuple of isometries $V_1, \ldots, V_d \in B(\mathcal{K})$ with orthogonal ranges, such that for all $n_1, \ldots, n_k \in \{1, \ldots, d\}$,

$$A_{n_1} \cdots A_{n_k} = P_{\mathcal{H}} V_{n_1} \cdots V_{n_k} |_{\mathcal{H}}$$
Classical dilation theorems

Theorem (Sz.-Nagy and Ando dilations theorem)

For every pair of commuting contractions $A_1, A_2 \in B(\mathcal{H})$, there exists a pair of commuting unitaries $U_1, U_2 \in B(\mathcal{K})$ such that

$$A_1^m A_2^n = P_\mathcal{H} U_1^m U_2^n|_{\mathcal{H}} \quad \text{for all } m, n \geq 0$$

Theorem (Bunce, Frazho, Popescu nc dilation theorem)

For every d-tuple row contraction $(A_1, \ldots, A_d) \in B(\mathcal{H})^d$ (i.e., $\|[A_1 \cdots A_d]\| \leq 1$), there exists a d-tuple of isometries $V_1, \ldots, V_d \in B(\mathcal{K})$ with orthogonal ranges, such that for all $n_1, \ldots, n_k \in \{1, \ldots, d\}$,

$$A_{n_1} \cdots A_{n_k} = P_\mathcal{H} V_{n_1} \cdots V_{n_k}|_{\mathcal{H}}$$
A new kind of dilation theorem

Theorem (Helton, Klep, McCullough, Schweighofer)

*Fix n and and a real n-dimensional Hilbert space \mathcal{H}.***
A new kind of dilation theorem

Theorem (Helton, Klep, McCullough, Schweighofer)

Fix n and and a real n-dimensional Hilbert space \mathcal{H}. There exists a constant ϑ_n, a Hilbert space \mathcal{K}, and an isometry $V : \mathcal{H} \to \mathcal{K}$, and a commuting family C in the unit ball of $B(\mathcal{K})_{sa}$ such that
A new kind of dilation theorem

Theorem (Helton, Klep, McCullough, Schweighofer)

Fix \(n \) and and a real \(n \)-dimensional Hilbert space \(\mathcal{H} \).
There exists a constant \(\vartheta_n \), a Hilbert space \(\mathcal{K} \), and an isometry
\(V : \mathcal{H} \to \mathcal{K} \), and a commuting family \(\mathcal{C} \) in the unit ball of \(B(\mathcal{K})_{sa} \) such
that for every contraction \(A \in B(\mathcal{H})_{sa} \), there exists \(N \in \mathcal{C} \) such that

\[
\frac{1}{\vartheta_n} A = V^* NV
\]
A new kind of dilation theorem

Theorem (Helton, Klep, McCullough, Schweighofer)

Fix n and and a real n-dimensional Hilbert space \mathcal{H}. There exists a constant ϑ_n, a Hilbert space \mathcal{K}, and an isometry $V : \mathcal{H} \to \mathcal{K}$, and a commuting family C in the unit ball of $B(\mathcal{K})_{sa}$ such that for every contraction $A \in B(\mathcal{H})_{sa}$, there exists $N \in C$ such that

$$\frac{1}{\vartheta_n} A = V^* N V$$

They also show find the optimal ϑ_n, and show (!) $\vartheta_n \sim \frac{\sqrt{\pi n}}{2}$
A new kind of dilation theorem

Theorem (Helton, Klep, McCullough, Schweighofer)

Fix n and and a real n-dimensional Hilbert space \mathcal{H}. There exists a constant ϑ_n, a Hilbert space \mathcal{K}, and an isometry $V : \mathcal{H} \to \mathcal{K}$, and a commuting family \mathcal{C} in the unit ball of $B(\mathcal{K})_{sa}$ such that for every contraction $A \in B(\mathcal{H})_{sa}$, there exists $N \in \mathcal{C}$ such that

$$\frac{1}{\vartheta_n} A = V^* N V$$

They also show find the optimal ϑ_n, and show (!)

$$\vartheta_n \sim \frac{\sqrt{\pi n}}{2}$$

!!!
A new kind of dilation theorem (reformulated)

Theorem (Helton, Klep, McCullough, Schweighofer)

Fix n and and a real n-dimensional Hilbert space \mathcal{H}. There exists a constant ϑ_n, a Hilbert space \mathcal{K}, such that for every $A \in B(\mathcal{H})_{sa}^d$ there is a d-tuple of commuting normal contractions $N \in B(\mathcal{K})_{sa}^d$ such that

$$\frac{1}{\vartheta_n} A \prec N$$
A new kind of dilation theorem (reformulated)

Theorem (Helton, Klep, McCullough, Schweighofer)

Fix n and a real n-dimensional Hilbert space \mathcal{H}. There exists a constant ϑ_n, a Hilbert space \mathcal{K}, such that for every $A \in B(\mathcal{H})_{sa}^d$ there is a d-tuple of commuting normal contractions $N \in B(\mathcal{K})_{sa}^d$ such that

$$\frac{1}{\vartheta_n} A \prec N$$

Questions:

• Why?
• Complex? (easy matter)
• Is there a constant independent of $n = \dim \mathcal{H}$? (must fix d)
• Can we obtain sharper control on the joint spectrum of N?
• If $d < \infty$ and $\dim \mathcal{H} < \infty$, can we do with $\dim \mathcal{K} < \infty$?
A new kind of dilation theorem (reformulated)

Theorem (Helton, Klep, McCullough, Schweighofer)

Fix \(n \) and and a real \(n \)-dimensional Hilbert space \(\mathcal{H} \). There exists a constant \(\vartheta_n \), a Hilbert space \(\mathcal{K} \), such that for every \(A \in B(\mathcal{H})_{sa}^d \) there is a \(d \)-tuple of commuting normal contractions \(N \in B(\mathcal{K})_{sa}^d \) such that

\[
\frac{1}{\vartheta_n} A \prec N
\]

Questions:

- Why? (later)
- Complex? (easy matter)
- Is there a constant independent of \(n = \dim \mathcal{H} \)? (must fix \(d \))
- Can we obtain sharper control on the joint spectrum of \(N \)?
- If \(d < \infty \) and \(\dim \mathcal{H} < \infty \), can we do with \(\dim \mathcal{K} < \infty \)?
A new kind of dilation theorem (reformulated)

Theorem (Helton, Klep, McCullough, Schweighofer)

Fix n and and a real n-dimensional Hilbert space \mathcal{H}. There exists a constant ϑ_n, a Hilbert space \mathcal{K}, such that for every $A \in B(\mathcal{H})_{sa}^d$ there is a d-tuple of commuting normal contractions $N \in B(\mathcal{K})_{sa}^d$ such that

$$\frac{1}{\vartheta_n} A \prec N$$

Questions:

- Why? (later)
- Complex? (easy matter)
A new kind of dilation theorem (reformulated)

Theorem (Helton, Klep, McCullough, Schweighofer)

Fix \(n \) and and a real \(n \)-dimensional Hilbert space \(\mathcal{H} \). There exists a constant \(\vartheta_n \), a Hilbert space \(\mathcal{K} \), such that for every \(A \in B(\mathcal{H})_{sa}^d \) there is a \(d \)-tuple of commuting normal contractions \(N \in B(\mathcal{K})_{sa}^d \) such that

\[
\frac{1}{\vartheta_n} A \prec N
\]

Questions:

- Why? (later)
- Complex? (easy matter)
- Is there a constant independent of \(n = \dim \mathcal{H} \)? (must fix \(d \))
A new kind of dilation theorem (reformulated)

Theorem (Helton, Klep, McCullough, Schweighofer)

Fix n and and a real n-dimensional Hilbert space \mathcal{H}. There exists a constant ϑ_n, a Hilbert space \mathcal{K}, such that for every $A \in B(\mathcal{H})_{sa}^d$ there is a d-tuple of commuting normal contractions $N \in B(\mathcal{K})_{sa}^d$ such that

$$\frac{1}{\vartheta_n} A \prec N$$

Questions:

- Why? (later)
- Complex? (easy matter)
- Is there a constant independent of $n = \dim \mathcal{H}$? (must fix d)
- Can we obtain sharper control on the joint spectrum of N?
A new kind of dilation theorem (reformulated)

Theorem (Helton, Klep, McCullough, Schweighofer)

Fix \(n \) and and a real \(n \)-dimensional Hilbert space \(\mathcal{H} \). There exists a constant \(\vartheta_n \), a Hilbert space \(\mathcal{K} \), such that for every \(A \in B(\mathcal{H})_{sa}^d \) there is a \(d \)-tuple of commuting normal contractions \(N \in B(\mathcal{K})_{sa}^d \) such that

\[
\frac{1}{\vartheta_n} A \prec N
\]

Questions:

- Why? (later)
- Complex? (easy matter)
- Is there a constant independent of \(n = \dim \mathcal{H} \)? (must fix \(d \))
- Can we obtain sharper control on the joint spectrum of \(N \)?
- If \(d < \infty \) and \(\dim \mathcal{H} < \infty \), can we do with \(\dim \mathcal{K} < \infty \)?
A new kind of dilation theorem (reformulated)

Theorem (Helton, Klep, McCullough, Schweighofer)

Fix \(n \) and and a real \(n \)-dimensional Hilbert space \(\mathcal{H} \). There exists a constant \(\vartheta_n \), a Hilbert space \(\mathcal{K} \), such that for every \(A \in B(\mathcal{H})_{sa}^d \) there is a \(d \)-tuple of commuting normal contractions \(N \in B(\mathcal{K})_{sa}^d \) such that

\[
\frac{1}{\vartheta_n} A \prec N
\]

Questions:

- Why? (later)
- Complex? (easy matter)
- Is there a constant independent of \(n = \dim \mathcal{H} \)? (must fix \(d \))
- Can we obtain sharper control on the joint spectrum of \(N \)?
- If \(d < \infty \) and \(\dim \mathcal{H} < \infty \), can we do with \(\dim \mathcal{K} < \infty \)?
Theorem (Davidson, Dor-On, S, Solel)

Suppose that \(K \subseteq \mathbb{R}^d \), with some nice symmetry properties. For every \(A \in B(\mathcal{H})_{sa}^d \) such that the numerical range \(\mathcal{W}_1(A) \subseteq K \), there is a \(d \)-tuple of commuting normal operators \(N \) on some Hilbert space \(\mathcal{K} \) such that

\[
\sigma(N) \subseteq K
\]

\[
\frac{1}{d}A \prec N
\]
Normal dilation for noncommuting tuples

Rank independent dilation with spectral constraints

Theorem (Davidson, Dor-On, S, Solel)

Suppose that $K \subseteq \mathbb{R}^d$, with some nice symmetry properties. For every $A \in B(H)^d_{sa}$ such that the numerical range $\mathcal{W}_1(A) \subseteq K$, there is a d-tuple of commuting normal operators N on some Hilbert space K such that

$$\sigma(N) \subseteq K$$

$$\frac{1}{d} A \prec N$$

If $\dim H < \infty$ then one can arrange $\dim K < \infty$
Normal dilation for noncommuting tuples

Rank independent dilation with spectral constraints

Theorem (Davidson, Dor-On, S, Solel)

Suppose that $K \subseteq \mathbb{R}^d$, with some nice symmetry properties. For every $A \in B(\mathcal{H})_{sa}^d$ such that the numerical range $\mathcal{W}_1(A) \subseteq K$, there is a d-tuple of commuting normal operators N on some Hilbert space \mathcal{K} such that

$$\sigma(N) \subseteq K$$

$$\frac{1}{d} A \prec N$$

If $\dim \mathcal{H} < \infty$ then one can arrange $\dim \mathcal{K} < \infty^a$

aGeneral fact, here follows from explicit construction
Rank independent dilation with spectral constraints

Theorem (Davidson, Dor-On, S, Solel)

Suppose that $K \subseteq \mathbb{R}^d$, with some nice symmetry properties. For every $A \in B(\mathcal{H})_{sa}^d$ such that the numerical range $\mathcal{W}_1(A) \subseteq K$, there is a d-tuple of commuting normal operators N on some Hilbert space \mathcal{K} such that

\[
\sigma(N) \subseteq K
\]

\[
\frac{1}{d} A \prec N
\]

If $\dim \mathcal{H} < \infty$ then one can arrange $\dim \mathcal{K} < \infty^a$

aGeneral fact, here follows from explicit construction
Explanations

Symmetry properties

There exist k real $d \times d$ matrices $\lambda^{(1)}, \ldots, \lambda^{(k)}$ of rank one such that $I_d \in \text{conv}\{\lambda^{(1)}, \ldots, \lambda^{(k)}\}$ and

$$
\lambda^{(m)} K \subseteq dK, \quad m = 1, \ldots, k
$$

ETKIM: invariant under permutations and sign changes of coordinates. More generally: invariant under projections onto orthonormal basis.
Normal dilation for noncommuting tuples

Explanations

Symmetry properties

There exist k real $d \times d$ matrices $\lambda^{(1)}, \ldots, \lambda^{(k)}$ of rank one such that $I_d \in \text{conv}\{\lambda^{(1)}, \ldots, \lambda^{(k)}\}$ and

$$\lambda^{(m)} K \subseteq dK, \quad m = 1, \ldots, k$$

ETKIM: invariant under permutations and sign changes of coordinates. More generally: invariant under projections onto orthonormal basis.

Numerical range

$$\mathcal{W}_1(A) := \{\phi(A) = (\phi(A_1), \ldots, \phi(A_d)) \mid \phi : B(\mathcal{H}) \to \mathbb{C} \text{ is a state} \}$$
Examples

Example - the regular tetrahedron

Not invariant under projection to an o.n.b.
Invariant under projections onto a frame.
(Also: convex hulls of frames with high symmetry, e.g., regular polytopes)

Image credit: http://mathworld.wolfram.com “Regular Tetrahedron”
Matrix sets

We are interested with working with all d-tuples of $n \times n$ matrices of all sizes:

$$\mathcal{M}^d := \bigcup_n (\mathcal{M}_n)^d$$

Another case of interest is all d-tuples of selfadjoint matrices of all sizes:

$$\mathcal{M}_{sa}^d := \bigcup_n (\mathcal{M}_n)_{sa}^d$$
Matrix sets

We are interested with working with all d-tuples of $n \times n$ matrices of all sizes:

$$\mathcal{M}^d := \bigcup_n (M_n)^d$$

Another case of interest is all d-tuples of selfadjoint matrices of all sizes:

$$\mathcal{M}_{sa}^d := \bigcup_n (M_n)_{sa}^d$$

A (free/matrix) subset of \mathcal{M}_{sa}^d is a set of the form

$$S = \bigcup_n S_n$$

such that $S_n \subseteq (M_n)_{sa}^d$ for all n.
Matrix convex sets

Definition

A set $S = \bigcup_n S_n \subseteq \mathcal{M}_s^d$ is said to be matrix convex if

1) $X \in S_n \subseteq (M_n)^d_s$ implies that for every $\phi \in \text{UCP}(M_n, M_m)$,

$$\phi(X) = (\phi(X_1), \ldots, \phi(X_d)) \in S$$

2) $X, Y \in S$ implies that

$$X \oplus Y = (X_1 \oplus Y_1, \ldots, X_d \oplus Y_d) \in S$$
Definition

A set \(S = \bigcup_n S_n \subseteq \mathcal{M}^d_{sa} \) is said to be **matrix convex** if

1) \(X \in S_n \subseteq (M_n)^d_{sa} \) implies that for every \(\phi \in UCP(M_n, M_m) \),

\[
\phi(X) = (\phi(X_1), \ldots, \phi(X_d)) \in S
\]

2) \(X, Y \in S \) implies that

\[
X \oplus Y = (X_1 \oplus Y_1, \ldots, X_d \oplus Y_d) \in S
\]

Equivalently, \(S \) is matrix convex if it is invariant under “matrix convex combinations”:

For \(X^{(i)} = (X_1^{(i)}, \ldots, X_d^{(i)}) \in S \) (for \(i = 1, 2, \ldots \))

\[
\sum_i (V_i^* X_1^{(i)} V_i, \ldots, V_i^* X_d^{(i)} V_i) \in S \quad \text{whenever} \quad \sum V_i^* V_i = I.
\]
Inclusions of matrix convex sets - motivation

Given two matrix convex sets $S = \bigcup_n S_n$ and $T = \bigcup_n T_n$, we say that $S \subseteq T$ if $S_n \subseteq T_n$ for all n.

Given two spectrahedra (convex sets) $K, L \subseteq \mathbb{R}^d$, determining whether $K \subseteq L$ is important in robust control, but can be computationally hard.

Let S and T be “free spectrahedra” (matrix convex sets) with $S_1 = K$ and $T_1 = L$.

[HKM2013] explain that considering inclusion problems of the type $S \subseteq T$ for the matrix convex sets, instead of inclusion problems $K \subseteq L$, generalizes a celebrated relaxation (which is a more tractable problem) of Ben-Tal and Nemirovski treating the special case $K = [-r, r]^d \subseteq L$.

Clearly $S \subseteq T \Rightarrow S_1 \subseteq T_1$.

Suppose we know that $S_1 \subseteq T_1$. What can we say?

¹Does not seem to be of practical relevance to our work — more to [HKMS]
Inclusions of matrix convex sets - motivation

Given two matrix convex sets $S = \bigcup_n S_n$ and $T = \bigcup_n T_n$, we say that $S \subseteq T$ if $S_n \subseteq T_n$ for all n.

1Does not seem to be of practical relevance to our work — more to [HKMS]
Inclusions of matrix convex sets - motivation\(^1\)

Given two matrix convex sets \(S = \bigcup_n S_n \) and \(T = \bigcup_n T_n \), we say that \(S \subseteq T \) if \(S_n \subseteq T_n \) for all \(n \).

Given two spectrahedra (convex sets) \(K, L \subseteq \mathbb{R}^d \), determining whether \(K \subseteq L \) is important in robust control, but can be computationally hard.

\(^1\)Does not seem to be of practical relevance to our work — more to [HKMS]
Inclusions of matrix convex sets - motivation

Given two matrix convex sets $S = \bigcup_n S_n$ and $\mathcal{T} = \bigcup_n \mathcal{T}_n$, we say that $S \subseteq \mathcal{T}$ if $S_n \subseteq \mathcal{T}_n$ for all n.

Given two spectrahedra (convex sets) $K, L \subseteq \mathbb{R}^d$, determining whether $K \subseteq L$ is important in robust control, but can be computationally hard.

Let S and \mathcal{T} be “free spectrahedra” (matrix convex sets) with $S_1 = K$ and $\mathcal{T}_1 = L$.

1Does not seem to be of practical relevance to our work — more to [HKMS]
Inclusions of matrix convex sets - motivation

Given two matrix convex sets $S = \bigcup_n S_n$ and $T = \bigcup_n T_n$, we say that $S \subseteq T$ if $S_n \subseteq T_n$ for all n.

Given two spectrahedra (convex sets) $K, L \subseteq \mathbb{R}^d$, determining whether $K \subseteq L$ is important in robust control, but can be computationally hard.

Let S and T be “free spectrahedra” (matrix convex sets) with $S_1 = K$ and $T_1 = L$.

[HKM2013] explain that considering inclusion problems of the type $S \subseteq T$ for the matrix convex sets, instead of inclusion problems $K \subseteq L$, generalizes a celebrated relaxation (which is a more tractable problem) of Ben-Tal and Nemirovski treating the special case $K = [-r, r]^d \subseteq L$.

1Does not seem to be of practical relevance to our work — more to [HKMS]
Inclusions of matrix convex sets - motivation\(^1\)

Given two matrix convex sets \(S = \bigcup_n S_n \) and \(T = \bigcup_n T_n \), we say that \(S \subseteq T \) if \(S_n \subseteq T_n \) for all \(n \).

Given two spectrahedra (convex sets) \(K, L \subseteq \mathbb{R}^d \), determining whether \(K \subseteq L \) is important in robust control, but can be computationally hard.

Let \(S \) and \(T \) be “free spectrahedra” (matrix convex sets) with \(S_1 = K \) and \(T_1 = L \).

[HKM2013] explain that considering inclusion problems of the type \(S \subseteq T \) for the matrix convex sets, instead of inclusion problems \(K \subseteq L \), generalizes a celebrated relaxation (which is a more tractable problem) of Ben-Tal and Nemirovski treating the special case \(K = [−r, r]^d \subseteq L \).

Clearly

\[
S \subseteq T \Rightarrow S_1 \subseteq T_1
\]

\(^1\)Does not seem to be of practical relevance to our work — more to [HKMS]
Inclusions of matrix convex sets - motivation

Given two matrix convex sets $S = \bigcup_n S_n$ and $T = \bigcup_n T_n$, we say that $S \subseteq T$ if $S_n \subseteq T_n$ for all n.

Given two spectrahedra (convex sets) $K, L \subseteq \mathbb{R}^d$, determining whether $K \subseteq L$ is important in robust control, but can be computationally hard.

Let S and T be “free spectrahedra” (matrix convex sets) with $S_1 = K$ and $T_1 = L$.

[HKM2013] explain that considering inclusion problems of the type $S \subseteq T$ for the matrix convex sets, instead of inclusion problems $K \subseteq L$, generalizes a celebrated relaxation (which is a more tractable problem) of Ben-Tal and Nemirovski treating the special case $K = [-r, r]^d \subseteq L$.

Clearly

$$S \subseteq T \Rightarrow S_1 \subseteq T_1$$

Suppose we know that $S_1 \subseteq T_1$. What can we say?

\footnote{Does not seem to be of practical relevance to our work — more to [HKMS]}
Minimal and maximal matrix convex sets over K

Let $0 \in K \subseteq \mathbb{R}^d$ be a closed convex set. Then

$$K = \{ x \in \mathbb{R}^d : \sum a_i x_i \leq 1, \quad \forall (a_1, \ldots, a_d) \in K^\circ \}.$$
Minimal and maximal matrix convex sets over K

Let $0 \in K \subseteq \mathbb{R}^d$ be a closed convex set. Then

$$K = \{ x \in \mathbb{R}^d : \sum a_i x_i \leq 1, \quad \forall (a_1, \ldots, a_d) \in K^\circ \}.$$

We define

$$\mathcal{W}^{\max}(K) = \{ X \in \mathcal{M}^d_{sa} : \sum a_i X_i \leq I, \quad \forall (a_1, \ldots, a_d) \in K^\circ \}.$$

and

$$\mathcal{W}^{\min}(K) = \{ X \in \mathcal{M}^d_{sa} : \exists N \text{ normal } \sigma(N) \subseteq K \text{ and } X \prec T \}.$$
Minimal and maximal matrix convex sets over K

Let $0 \in K \subseteq \mathbb{R}^d$ be a closed convex set. Then

$$K = \{ x \in \mathbb{R}^d : \sum a_i x_i \leq 1, \quad \forall (a_1, \ldots, a_d) \in K^\circ \}.$$

We define

$$\mathcal{W}^{\text{max}}(K) = \{ X \in \mathcal{M}^d_{sa} : \sum a_i X_i \leq I, \quad \forall (a_1, \ldots, a_d) \in K^\circ \}.$$

and

$$\mathcal{W}^{\text{min}}(K) = \{ X \in \mathcal{M}^d_{sa} : \exists N \text{ normal } \sigma(N) \subseteq K \text{ and } X \prec T \}.$$

$\mathcal{W}^{\text{min}}(K)$ and $\mathcal{W}^{\text{max}}(K)$ really are the minimal and maximal matrix convex sets “over” K.

Ken Davidson, Adam Dor-On, Orr Shalit and Baruch Solel

Dilations, inclusions and CP maps
Application to matrix set inclusions

Theorem (DDSS, repeated)

Suppose that $K \subseteq \mathbb{R}^d$, with some nice symmetry properties. For every $A \in B(\mathcal{H})_{sa}^d$ such that the numerical range $\mathcal{W}_1(A) \subseteq K$, there is a d-tuple of commuting normal operators N, such that

$$\sigma(N) \subseteq K, \quad \frac{1}{d} A \prec N$$
Application to matrix set inclusions

Theorem (DDSS, repeated)

Suppose that $K \subseteq \mathbb{R}^d$, with some nice symmetry properties. For every $A \in B(\mathcal{H})^d_{sa}$ such that the numerical range $W_1(A) \subseteq K$, there is a d-tuple of commuting normal operators N, such that

$$\sigma(N) \subseteq K, \quad \frac{1}{d} A \prec N$$

Corollary

$W^{max}(K) \subseteq dW^{min}(K)$.
Application to matrix set inclusions

Theorem (DDSS, repeated)

Suppose that $K \subseteq \mathbb{R}^d$, with some nice symmetry properties. For every $A \in B(\mathcal{H})_{sa}^d$ such that the numerical range $\mathcal{W}_1(A) \subseteq K$, there is a d-tuple of commuting normal operators N, such that

\[
\sigma(N) \subseteq K, \quad \frac{1}{d} A \prec N
\]

Corollary

$\mathcal{W}^{\text{max}}(K) \subseteq d\mathcal{W}^{\text{min}}(K)$. In particular, if $S_1 \subseteq T_1 = K$, then

\[
S \subseteq dT.
\]
Application to matrix set inclusions

Theorem (DDSS, repeated)

Suppose that $K \subseteq \mathbb{R}^d$, with some nice symmetry properties. For every $A \in B(\mathcal{H})^d_{sa}$ such that the numerical range $\mathcal{W}_1(A) \subseteq K$, there is a d-tuple of commuting normal operators N, such that

$$\sigma(N) \subseteq K \ , \ \frac{1}{d}A \prec N$$

Corollary

$\mathcal{W}^{max}(K) \subseteq d\mathcal{W}^{min}(K)$. In particular, if $S_1 \subseteq T_1 = K$, then

$$S \subseteq dT.$$

Sharpness: d is the best constant that works for all such K.

Ken Davidson, Adam Dor-On, Orr Shalit and Baruch Solel
Application to matrix set inclusions

Theorem (DDSS, repeated)

Suppose that \(K \subseteq \mathbb{R}^d \), with some nice symmetry properties. For every \(A \in B(\mathcal{H})_{sa}^d \) such that the numerical range \(\mathcal{W}_1(A) \subseteq K \), there is a \(d \)-tuple of commuting normal operators \(N \), such that

\[
\sigma(N) \subseteq K, \quad \frac{1}{d} A \prec N
\]

Corollary

\(\mathcal{W}^{\max}(K) \subseteq d \mathcal{W}^{\min}(K) \). In particular, if \(S_1 \subseteq T_1 = K \), then

\[
S \subseteq dT.
\]

Sharpness: \(d \) is the best constant that works for all such \(K \).

(we don’t know whether for all such \(K \), \(d \) is the best constant).
More on scaled dilations and scaled inclusions

Theorem (DDSS, following HKMS)

Let $K \subseteq \mathbb{R}^d$ and $c > 0$. TFAE:

1. For every $A \in \mathcal{M}_{sa}^d$ such that the numerical range $\mathcal{W}_1(A) \subseteq K$, there is a d-tuple of commuting normal operators N on a finite dimensional Hilbert space, such that $\sigma(N) \subseteq K$ and $A \prec cN$.

2. $\mathcal{W}^{\text{max}}(K) \subseteq c\mathcal{W}^{\text{min}}(K)$.
More on scaled dilations and scaled inclusions

Theorem (DDSS, following HKMS)

Let $K \subseteq \mathbb{R}^d$ and $c > 0$. TFAE:

1. For every $A \in M^d_{sa}$ such that the numerical range $\mathcal{W}_1(A) \subseteq K$, there is a d-tuple of commuting normal operators N on a finite dimensional Hilbert space, such that $\sigma(N) \subseteq K$ and $A \prec cN$.

2. $\mathcal{W}^{max}(K) \subseteq c \mathcal{W}^{min}(K)$.

Problem

Find the optimal constant c for given $K \subseteq \mathbb{R}^d$.

Sharper theorems, frames and polar duals — example

Denote $D = \{ x \in \mathbb{R}^d : \sum |x_i| \leq 1 \}$. By the corollary we have for $K = D$ or $K = [-1, 1]^d$, $\mathcal{W}^{\text{max}}(K) \subseteq d \mathcal{W}^{\text{min}}(K)$.
Sharper theorems, frames and polar duals — example

Denote $D = \{ x \in \mathbb{R}^d : \sum |x_i| \leq 1 \}$.

By the corollary we have for $K = D$ or $K = [-1, 1]^d$,

$$\mathcal{W}^{\text{max}}(K) \subseteq d\mathcal{W}^{\text{min}}(K)$$

Theorem (example)

$$\mathcal{W}^{\text{max}}(D) \subseteq \mathcal{W}^{\text{min}}([-1, 1]^d), \quad \mathcal{W}^{\text{max}}([-1, 1]^d) \subseteq d\mathcal{W}^{\text{min}}(D).$$
Thank you!
Proof of the dilation theorem

Theorem (Davidson, Dor-On, S, Solel)

Suppose that $K \subseteq \mathbb{R}^d$, with some nice symmetry properties. For every $A \in B(\mathcal{H})_{sa}^d$ such that the numerical range $\mathcal{W}_1(A) \subseteq K$, there is a d-tuple of commuting normal operators N on some Hilbert space \mathcal{K} such that

$$\sigma(N) \subseteq K, \quad \frac{1}{d}A \prec N$$
Proof

Consider A as a tuple of operators on a Hilbert space \mathcal{H}. Put $\mathcal{K} = \mathcal{H} \otimes \mathbb{C}^k$ and define d^2 diagonal, self-adjoint matrices $S_{i,j}$, $1 \leq i, j \leq d$, by

$$S_{i,j} = \text{diag}(\lambda_{i,j}^{(1)}, \ldots, \lambda_{i,j}^{(k)}).$$

(1)

Define

$$N_i = \sum_{j=1}^{d} A_j \otimes S_{i,j} \in B(\mathcal{K}), \ i = 1, \ldots, d.$$

(2)
Proof

Consider A as a tuple of operators on a Hilbert space \mathcal{H}. Put $\mathcal{K} = \mathcal{H} \otimes \mathbb{C}^k$ and define d^2 diagonal, self-adjoint matrices $S_{i,j}$, $1 \leq i, j \leq d$, by

$$S_{i,j} = \text{diag}(\lambda_{i,j}^{(1)}, \ldots, \lambda_{i,j}^{(k)}).$$ \hspace{1cm} (1)

Define

$$N_i = \sum_{j=1}^{d} A_j \otimes S_{i,j} \in B(\mathcal{K}), \quad i = 1, \ldots, d.$$ \hspace{1cm} (2)

If $I_d = \sum_{p=1}^{k} \beta_p \lambda^{(p)}$, set $v = \sum_{p=1}^{k} \sqrt{\beta_p} e_p$ where $\{e_p\}$ is the standard basis of \mathbb{C}^k.

Ken Davidson, Adam Dor-On, Orr Shalit and Baruch Solel

Dilations, inclusions and CP maps
Proof

Consider A as a tuple of operators on a Hilbert space \mathcal{H}. Put $\mathcal{K} = \mathcal{H} \otimes \mathbb{C}^k$ and define d^2 diagonal, self-adjoint matrices $S_{i,j}$, $1 \leq i, j \leq d$, by

$$S_{i,j} = \text{diag}(\lambda_{i,j}^{(1)}, \ldots, \lambda_{i,j}^{(k)}).$$

(1)

Define

$$N_i = \sum_{j=1}^{d} A_j \otimes S_{i,j} \in B(\mathcal{K}), \ i = 1, \ldots, d.$$ (2)

If $I_d = \sum_{p=1}^{k} \beta_p \lambda^{(p)}$, set $v = \sum_{p=1}^{k} \sqrt{\beta_p} e_p$ where $\{e_p\}$ is the standard basis of \mathbb{C}^k.

Define an isometry $V : \mathcal{H} \to \mathcal{K} = \mathcal{H} \otimes \mathbb{C}^k$ by $Vh = h \otimes v$.

Ken Davidson, Adam Dor-On, Orr Shalit and Baruch Solel
Dilations, inclusions and CP maps
Proof

Consider A as a tuple of operators on a Hilbert space \mathcal{H}. Put $\mathcal{K} = \mathcal{H} \otimes \mathbb{C}^k$ and define d^2 diagonal, self-adjoint matrices $S_{i,j}$, $1 \leq i, j \leq d$, by

$$S_{i,j} = \text{diag}(\lambda_{i,j}^{(1)}, \ldots, \lambda_{i,j}^{(k)}).$$

(1)

Define

$$N_i = \sum_{j=1}^{d} A_j \otimes S_{i,j} \in B(\mathcal{K}), \; i = 1, \ldots, d.$$ \hspace{1cm} (2)

If $I_d = \sum_{p=1}^{k} \beta_p \lambda^{(p)}$, set $v = \sum_{p=1}^{k} \sqrt{\beta_p} e_p$ where $\{e_p\}$ is the standard basis of \mathbb{C}^k.

Define an isometry $V : \mathcal{H} \rightarrow \mathcal{K} = \mathcal{H} \otimes \mathbb{C}^k$ by $Vh = h \otimes v$.

The construction is complete. To finish the proof one checks that all claims hold.